Automated Tracking and Grasping
of a Moving Object with a
Robotic Hand-Eye System

Peter K. Allen
Aleksandar Timcenko
Billibon Yoshimi
Paul Michelman

Department of Computer Science
Columbia University

New York, NY 10027
Technical Report CUCS-034-91

November 26, 1991

Abstract

Most robotic grasping tasks assume a stationary or fixed object. In this paper, we explore
the requirements for tracking and grasping a moving object. The focus of our work is to achieve
a high level of interaction between a real-time vision system capable of tracking moving objects
in 3-D and a robot arm equipped with a dexterous hand that can be used pick up a moving
object. We are interested in exploring the interplay of hand-eye coordination for dynamic
grasping tasks such as grasping of parts on a moving conveyor system, assembly of articulated
parts or for grasping from a mobile robotic system. Coordination between an organism’s sensing
modalities and motor control system is a hallmark of intelligent behavior, and we are pursuing
the goal of building an integrated sensing and actuation system that can operate in dynamic
as opposed to static environments. The system we have built addresses three distinct problems
in robotic hand-eye coordination for grasping moving objects: fast computation of 3-D motion
parameters from vision, predictive control of a moving robotic arm to track a moving object,
and grasp planning. The system is able to operate at approximately human arm movement
rates, and we present experimental results in which a moving model train is tracked, stably
grasped, and picked up by the system. The algorithms we have developed that relate sensing
to actuation are quite general and applicable to a variety of complex robotic tasks that require
visual feedback for arm and hand control.

This work was supported in part by DARPA contract N00039-84-C-0165, NSF grants DMC-
86-05065, DCI-86-08845, CCR-86-12709, IRI-86-57151, IRI-88-1319, North American Philips Labo-

ratories, Siemens Corporation and Rockwell Inc.

www.manaraa.com

1 INTRODUCTION

The focus of our work is to achieve a high level of interaction between a real-time vision system
capable of tracking moving objects in 3-D and a robot arm equipped with a dexterous hand that can
be used to intercept, grasp and pick up a moving object. We are interested in exploring the interplay
of hand-eye coordination for dynamic grasping tasks such as grasping of parts on a moving conveyor
system, assembly of articulated parts or for grasping from a mobile robotic system. Coordination
between an organism’s sensing modalities and motor control system is a hallmark of intelligent
behavior, and we are pursuing the goal of building an integrated sensing and actuation system that
can operate in dynamic as opposed to static environments.

There has been much research in robotics over the last few years that addresses either visual
tracking of moving objects or generalized grasping problems. However, there have been few efforts
that try to link the two problems. It is quite clear that complex robotic tasks such as automated
assembly will need to have integrated systems that use visual feedback to plan, execute and monitor
grasping.

The system we have built addresses three distinct problems in robotic hand-eye coordination
for grasping moving objects: fast computation of 3-D motion parameters from vision, predictive
control of a moving robotic arm to track a moving object, and grasp planning. The system is able to
operate at approximately human arm movement rates, using visual feedback to track, stably grasp,
and pickup a moving object. The algorithms we have developed that relate sensing to actuation are
quite general and applicable to a variety of complex robotic tasks that require visual feedback for
arm and hand control.

Our work also addresses a very fundamental and limiting problem that is inherent in building
integrated sensing/actuation systems; integration of systems with different sampling and processing
rates. Most complex robotic systems are actually amalgams of different processing devices, connected
by a variety of methods. For example, our system consists of 3 separate computation systems:
a parallel image processing computer, a host computer that filters, triangulates and predicts 3-D
position from the raw vision data, and a separate arm control system computer that performs inverse
kinematic transformations and joint-level servoing. Each of these systems has its own sampling rate,
noise characteristics, and processing delays, which need to be integrated to achieve smooth and
stable real-time performance. In our case, this involves overcoming visual processing noise and
delays with a predictive filter based upon a probabilistic analysis of the system noise characteristics.
In addition, real-time arm control needs to be able to operate at fast servo rates regardless of whether
new predictions of object position are available.

The system consists of two fixed cameras that can image a scene containing a moving object
(Figure 1). A PUMA-560 with a parallel jaw gripper attached is used to track and pick up the
object as it moves (Figure 2). The system operates as follows:

1. The imaging system performs a stereoscopic optic-flow calculation at each pixel in the image.
From these optic-flow fields, a motion energy profile is obtained that forms the basis for a
triangulation that can recover the 3-D position of a moving object at video rates.

2. The 3-D position of the moving object computed by step 1 is initially smoothed to remove sen-
sor noise, and a non-linear filter is used to recover the correct trajectory parameters which can
be used for forward prediction, and the updated position is sent to the trajectory-planner/arm-
control system.

3. The trajectory planner updates the joint level servos of the arm via kinematic transform
equations. An additional fixed gain filter is used to provide servo-level control in case of
missed or delayed communication from the vision and filtering system.

www.manaraa.com

circle of radius
250 millimeters

Cameras

Figure 1: Tracking Grasping System

4. Once tracking is stable, the system commands the arm to intercept the moving object and the
hand is used to grasp the object stably and pick it up.

The following sections of the paper describe each of these subsystems in detail along with
experimental results.

2 PREVIOUS WORK

Previous efforts in the areas of motion tracking and real-time control are too numerous to exhaus-
tively list here. We instead list some notable efforts that have inspired us or use similar approaches.
Burt et al. [10] has focused on high-speed feature detection and hierarchical scaling of images in
order to meet the real-time demands of surveillance and other robotic applications. Related work
has been reported by Lee and Wohn [30] and Wiklund and Granlund [46] who use image differencing
methods to track motion. Corke, Paul and Wohn [14] report a feature-based tracking method that
uses special purpose hardware to drive a servo controller of an arm-mounted camera. Goldenberg
et al.[18] have developed a method that uses temporal filtering with vision hardware similar to our
own. Luo, Mullen and Wessel [31] report a real-time implementation of motion tracking in 1-D based
on Horn and Schunk’s method. Verghese et al. [42] report real-time, short-range visual tracking of
objects using a pipelined system similar to our own. Safadi [38] uses a tracking filter similar to our
own and a pyramid-based vision system, but few results are reported with this system. Rao and
Durrant-Whyte [37] have implemented a Kalman filter-based de-centralized tracking system that
tracks moving objects with multiple cameras. Miller [32] has integrated a camera and arm for a
tracking task where the emphasis is on learning kinematic and control parameters of the system.
Weiss et al. [45] also use visual feedback to develop control laws for manipulation. Brown [9] has
implemented a gaze control system that links a robotic “head” containing binocular cameras with
arservorcontrollersthatrallows one to maintain a fixed gaze on a moving object. Clark and Ferrier

3

www.manaraa.com

e

e

————_

Figure 2: Experimental Hardware.

[13] also have implemented a gaze control system for a mobile robot. A variation of the tracking
problems is the case of moving cameras. Some of the papers addressing this interesting problem are

[15, 17, 47].

The majority of literature on the control problems encountered in motion tracking experiments
is concerned with the problem of generating smooth, up-to-date trajectories from noisy and delayed
outputs from different vision algorithms. Our previous work [4] coped with that problem in a similar
way as in [39], using an « — 8 — « filter, which is a form of a steady-state Kalman filter. A similar
approach can be found in papers by [34, 29, 6]. In [34] a sophisticated control scheme is described
which combines a Kalman filter’s estimation and filtering power with an optimal (LQG) controller
which computes the robot’s motion. The authors have presented good tracking results, as well as
stated that the controller is robust enough so the use of more complex (time-varying LQG) methods
is not justified. The choice of gain matrices in the cost function and the best set of noise variances
is done empirically. The work of Lee and Kay [29] addresses the problem of uncertainty of cameras
in the robot’s coordinate frame. The fact that cameras have to be strictly fixed in robot’s frame
might be quite annoying since each time they are (most often incidentally) displaced, one has to
undertake a tedious job of their recalibration. Again, the estimation of moving object’s position and
orientation is done in the Cartesian space and a simple error model is assumed. Andersen et al. [6]
adopts a 3rd-order Kalman filter in order to allow a robotic system (consisting of two degrees of
freedom) to play the labyrinth game.

A somewhat different approach has been explored in the work of Papanikolopoulos et al. [35],
Houshangi [24] and Koivo et al. [27]. The auto-regressive (AR) and auto-regressive moving-average
with exogenous input (ARMAX) models are investigated. Tt is noteworthy to point out, as stated in
[35], that this is more of an implementation than a conceptual difference from the classical Kalman-

www.manaraa.com

filter approach since the coefficients of polynomials in ARMAX model depend on the Kalman gains.

3 VISION SYSTEM

In a visual tracking problem, motion in the imaging system has to be translated into 3-D scene
motion. OQur approach 1s to initially compute local optic-flow fields that measure image velocity at
each pixel in the image. A variety of techniques for computing optic-flow fields have been used with
varying results including matching based techniques [5, 11, 40], gradient based techniques [23, 33, 12]
and spatio-temporal energy methods [21, 2]. Optic-flow was chosen as the primitive upon which to
base the tracking algorithm for the following reasons:

e The ability to track an object in three dimensions implies that there will be motion across the
retinas (image planes) that are imaging the scene. By identifying this motion in each camera,
we can begin to find the actual 3-D motion.

e The principal constraint in the imaging process is high computational speed to satisfy the
update process for the robotic arm parameters. Hence, we needed to be able to compute
image motion quickly and robustly. The Horn-Schunck optic-flow algorithm (described below)
1s well suited for real-time computation on our PIPE image processing engine.

e We have developed a new framework for computing optic-flow robustly using an estimation-
theoretic framework [41]. While this work does not specifically use these ideas, we have future
plans to try to adapt this algorithm to such a framework.

Our method begins with an implementation of the Horn-Schunck method of computing optic-
flow [22]. The underlying assumption of this method is the optic-flow constraint equation, which
assumes image irradiance at time ¢ and ¢ + 6¢ will be the same:

I+ bx,y+ 6y, z+62)=1(x,y,2) (1)

If we expand this constraint via a Taylor series expansion, and drop second and higher-order
terms, we obtain the form of the constraint we need to compute normal velocity

Ipu+ Lyv+ 1, =0 (2)

where u and v are the velocities in image-space, and I, [, and [; are the spatial and temporal
derivatives in the image. This constraint limits the velocity field in an 1image to lie on a straight line
in velocity space. The actual velocity cannot be determined directly from this constraint due to the
aperture problem, but one can recover the component of velocity normal to this constraint line as:

Vo= (3)

12+ 12

While computationally appealing, this method of determining optic-flow has some inherent
problems. First, the computation is done on a pixel by pixel basis, creating a large computational
demand. Second, the information on optic flow is only available in areas where the gradients de-
fined above exist. A second, iterative process is usually employed to propagate velocities in image
neighborhoods, based upon a variety of smoothness and heuristic constraints.

We have overcome the first of these problems by using the PIPE image processor [26, 8]. The
PIPE. is.a-pipelined-parallel,image processing computer capable of processing 256x256x8 bit images

5

www.manaraa.com

at frame rate speeds, and it supports the operations necessary for optic-flow computation in a pixel-
parallel method (a typical image operation such as convolution, warping, addition/subtraction of
images can be done in one cycle - 1/60 second). The second problem is alleviated by our not needing
to know the actual velocities in the image. What we need is the ability to locate and quantify gross
image motion robustly. This rules out simple differencing methods which are too prone to noise and
will make location of image movement difficult. Hence, a set of normal velocities at strong gradients
is adequate for our task, precluding the need to iteratively propagate velocities in the image.

3.1 A REAL-TIME OPTIC-FLOW ALGORITHM

Our goal is to track a single moving object in real-time. We are using 2 fixed cameras that image the
scene and need to report motion in 3-D to a robotic arm control program. Each camera is calibrated
with the 3-D scene, but there is no explicit need to use registered (i.e scan-line coherence) cameras.
Our method computes optic-flow fields in each camera and then use a triangulation to intersect the
flow fields in areas of image motion in each camera. Four processors are used in parallel on the
PIPE. The processors are assigned as 2 per camera - one each for the calculation of X and Y motion
energy centroids in each image. We also use a special processor board (ISMAP) to perform real-time
histogramming. The steps below correspond to the numbers in Figure 3.

1. The camera images the scene and the image is sent to processing stages in the PIPE.

2. The image 1s smoothed by convolution with a Gaussian mask. The convolution operator is a
built in operation in the PIPE and it can be performed in one frame cycle.

3-4. In the next 2 cycles, two more images are read in, smoothed and buffered, yielding smoothed
images Iy and I; and I». The ability to buffer and pipeline images allows temporal operations
on images, albeit at the cost of processing delays (lags) on output. There are now 3 smoothed
images in the PIPE, with the oldest image lagging by 3/60 second.

5. Images Iy and I are subtracted yielding the temporal derivative I;.

6. In parallel with step 5, Image 7 is convolved with a 3x3 horizontal spatial gradient operator,
returning the discrete form of [;. In parallel, the vertical spatial gradient 1s calculated yielding
I, (not shown).

7-8. The results from steps 5 and 6 are held in buffers and then are input to a look-up table that
divides the temporal gradient at each pixel by the absolute value of the summed horizontal and
vertical spatial gradients. This yields the normal velocity in the image at each pixel. These
velocities are then thresholded and any isolated (i.e. single pixel motion energy) blobs are
morphologically eroded.

9-10. In order to get the centroid of the motion information, we need the X and Y coordinates of
the motion energy. For simplicity sake we show only the situation for the X coordinate. The
gray-value ramp in Figure 3 encodes the horizontal coordinate value (0-255) for each point
in the image. If we logically AND the above threshold velocities with the positional ramp, we
have an image which encodes high velocity with its positional coordinates in the image. In our
experiments, we thresholded all velocities below 10 pixels per 60 msec. to zero velocity.

11. By taking this result and histogramming it, via a special stage of the PIPE which performs
histograms at frame rate speeds, we can find the centroid of the moving object by finding the
mean of the resulting histogram. Histogramming the high velocity position encoded images

6

www.manaraa.com

il ©
Gais ian

Mask @ @
3] @

W
c H
—h!
—H|

9]

=

v

c

—h
—H|

D
=HH

PIPE MOTION TRACKING ALGORITHM

Figure 3: PIPE Motion Tracking Algorithm.

www.manaraa.com

Figure 4: Left and right camera images.

Figure 5: Motion energy derived from optic flow (left and right cameras).

www.manaraa.com

yields 256 16-bit values (a result for each intensity in the image). These 256 values can be read
off the PIPE via a parallel interface in about 10 ms. This operation is performed in parallel
to find the moving objects Y centroid (and in parallel for X and Y centroids for camera 2).
The total associated delay time for finding the centroid of a moving object becomes 15 cycles
or 0.25 seconds.

The same algorithm is run in parallel on the PIPE for the second camera. Once the motion
centroids are known for each camera, they are back-projected into the scene using the camera
calibration matrices and triangulated to find the actual 3-D location of the movement. Because of
the pipelined nature of the PIPE, a new X or Y coordinate is produced every 1/60 second with this
delay. Figure 4 shows 2 camera images of the moving train and Figure 5 shows the motion energy
derived from the real-time optic-flow algorithm.

While we are able to derive 3D position from motion-stereo at real-time rates, there are a number
of sources of noise and error inherent in the vision system. These include stereo-triangulation error,
moving shadows which are interpreted as object motion (we use no special lighting in the scene) |
and small shifts in centroid alignments due to the different viewing angles of the cameras, which have
a large baseline. The net effect of this is to create a 3-D position signal that is accurate enough for
gross level object tracking, but is not sufficient for the smooth and highly accurate tracking required
for grasping the object. We describe in the next section how a probabilistic model of the motion
that includes noise can be used to extract a more stable and accurate 3D position signal.

4 ROBOTIC ARM CONTROL

The second part of the system is the arm control. The robotic arm has to be controlled in real-time
to follow the motion of the object, using the output of the vision system. The raw vision system
output is not sufficient as a control parameter since its output is both noisy and delayed in time.
The control system needs to do the following:

e Filter out the noise with a digital filter

e Predict the position to cope with delays introduced by both vision subsystem and the digital
filter

e Perform the kinematic transformations which will map the desired manipulator’s tip position
from a Cartesian coordinate frame into joint coordinates, and actually perform the movement

Our vision algorithm provides in each sampling instant a position in space as a triplet of
Cartesian coordinates (z,y, z). The task of the control algorithm is to smooth and predict ahead
the trajectory, thus positioning the robot where the object is during its motion.

A well known and useful solution is the Kalman filter approach, because it successfully performs
both smoothing and prediction. However, the assumption the Kalman filter makes is that the noise
applied to the system is white. That fact directly depends on the parametrization of the trajectory
and, unfortunately in our case, the simplest possible parametrization - Cartesian- does not support
this noise model. Our previous work [4] used a variant of this approach and obtained tracking that
was smooth but not accurate enough to allow actual grasping of the moving object. Our solution
to this problem was to appeal to a local coordinate system that was able to model the motion and
system noise characteristics more accurately, thus producing a more accurate control algorithm.

www.manaraa.com

Figure 6: Trajectory: the moving object is in P41 while the vision computes Qr41

4.1 The Model of the 3D Motion

The main 1dea in the trajectory parametrization used in this paper is to describe a point in a
local coordinate frame, relative to the point from the previous sampling instant, by the triplet of
coordinates (s, ¢, z) where

e s is the length of an arc between two points
e ¢ is the “bending” of the trajectory (see figure 6)

e 7 is the altitude difference in two consecutive points

Due to the existence of noise, all three coordinates are random variables with certain distri-
butions. We have made the following assumptions, as a result of both reasoning about the vision
algorithm and certain necessary simplifications:

e In sampling instant k& our object is in point Py

o In the next sampling instant k& 4+ 1 the object is in P41 and the point returned by the vision
algorithm is Qr41

® (Qi4+1 1s normally distributed around Ppy1. The noise can be expressed by its two components,
tangential n; and normal n,

e n; and n, are both zero-mean, with the same dispersion and mutually not correlated. Ex-
perimentally, it has been determined that their coefficient of correlation is between 0.1 and

0.2.

Under these assumptions it can be shown that (see Appendix A) the velocity v and curvature
K are:

=1 T 4
v=Jim s/ ()
K= Thino tan ¢p/sg (5)

where sp = || Pey1 — Pil|, wo = 7 — £LPp—1 Py Pry1 and T is the sampling interval.

The initial experiments with this model separates 3-D space into an XY plane and the Z axis,
and addresses these two components of motion separately. However, the method for the XY plane
canpberextendedstonimcluderanother parameter which will create a full Frenet Frame at each instant

10

www.manaraa.com

1500

1250

1000

2 4 6 8 10 12 14

Figure 7: The density of s;

of time in the trajectory. Our initial experiments (described below) tracked a planar curve, allowing
us to use this simplification. Motion in the Z direction is tracked with a Cartesian displacement as
outlined in [4].

Our model assumes the following coordinate transformation that relates the moving object’s
coordinate frame at one instant with the next instant in time:

Rot(z, ¢g) o Trans(x, s) o Trans(z, Az) (6)

where Rot and Trans are rotation about and translation along a given axis. Presented as a 4 x 4
matrix, transformation (6) is

cos¢pg —singg 0 scosgg
| singy cos¢g 0 ssingg
Tdelta = 0 0 1 Az
0 0 0 1

What are advantages of such a parametrization? The most obvious one is the simplicity of the
prediction task in this framework; all we need is to multiply the velocity v = s/T by the time 7 > T
we want to predict ahead, as well as “bending” ¢. The next advantage is that in order to achieve an
accurate prediction, we do not need a high-order model with the mostly heuristic tuning of numerous
parameters. The price we have to pay is that filtering is not straightforward. It turns out that we
cannot just apply a low-pass filter in order to recover a DC component from s, but rather we need
more elaborate approach which takes into account a probabilistic distribution of s. Figure 7 is a
histogram of the experimentally measured density of the computed arc length between triangulated
image motion points. This distribution shows the need to use a more sophisticated method than
a simple averaging filter, which we have found to be incorrect in being able to correctly estimate
the movement of the object between vision samples. The analysis below describes a probablilistic
model that correctly models the experimental distribution in Figure 7, allowing us to recover the
actual arc length parameter so and the bending angle ¢ at each sampling instant. While this
model introduces more complexity than a standard Cartesian model, we will see below that it is
more effective in allowing us to accurately predict and smooth our trajectory.

4.2 Probability Distributions of s and ¢

In this section, we will motivate the choice of model used to recover the parameter values sg and ¢q
given therestimateof thevarc length s which we calculate from the triangulated vision data.

11

www.manaraa.com

0.8+

0.6+

0.5 1 1.5 2 2.5 3

Figure 8: Distribution density f(s),so = 1,0 = 0.4 — 1.0, increment = 0.1

Let s = |[|Qg+1 — Px|| be the distance between the object and the next position returned by the
vision algorithm. According to figure 6 we have

s — H[coS o singpo][nt]_i_[so]H:
—sin g €OS Pq Nip 0
= V(i +s0)? +np? (7)

where n} and n], are Gaussian with dispersion ¢. According to the definition of the probability
distribution, we can write the distribution F'(s) as

F(s)://D L4052 +(5) 4gan, (8)

2702

where D 1s a disk of the radius s.

Now by introducing substitution ¢ = rcos#, n = rsinf we get

ror= s [Sl ey)

2702

Distribution density is given as f(s) = %ﬁl or after differentiation

2 2
s24s2

27
f(s) = L/ e 720y (10)
0

2w o?
The last integral can be expressed by a modified Bessel function I(z):

2 2
s 7+s5 $8p

1(s) = e T 1Y) (11)

A graph of f(s) is given in figure 8. Here sq is fixed to 1 and ¢ varies from 0.4 to 1.0. Our job is to
recover sg given f(s).

It is apparent from the figure 8 that the peak value of f(s) depends on o, and drifts towards
higher values as ¢ grows. The expectation for s also depends on . In particular, we have

s1=FE(s) = /000 sf(s)ds = Uu(s—o) (12)

o

12

www.manaraa.com

2
T

1.1

1.08
1.06
1.04
1.02

1 2 3 4 5 X
Figure 9: y = uy (%)
where

2 2

u(z) = ﬂe-“/w%) + S (o) + () (13)

Here ¢ is the constant for the given system and it is related to sg. In order to estimate o we will
use second-order moment:

s2=F(s*) = /00 s2f(s)ds = s2 + 20* (14)
0

Equations 12 and 14 are derived in appendix B.
Now by eliminating sg from (12) and (14) we have

l=zu (7])2; QZZ) (15)

4

where p = so/s1 and z = o/s;. Now by setting & = we end up with an equation (see
appendix C)
r?+2
uie) = ———=p (16)
)
Equation 16 relates our known control inputs (p = s2/s1) to x. We can create a table of values
for this function offline, and then by interpolation calculate a value of = given p.

Let 2g(p) be the solution of (16). Now we can express sg and o as functions of s; and sa as

follows:
S0 = 520(—8_1)2 (17)
2+ xg (z—f)
P — (18)

2
24e0(3)

This method requires little on-line computation - an interpolation table of values of wy is all
we need to recover the arc length parameter sy. Figure 7 is the experimentally measured density
of 51 taken from the triangulated optic-flow fields. This distribution’s resemblance to figure 8 (the
theoretical density) is clear.

13

www.manaraa.com

-1.5 -1. -0.5 0.5 1. 1.5
Figure 10: Distribution density f(¢)

To find the bending parameter ¢y, we use the same technique as for the distribution of s, and
we get the following formula:

cos(¢ — ¢g) o sin?(-s0)

V2mk

where k = o/sp and ¢ — ¢g € (—7/2,7/2). Tt is obvious that f is symmetric around ¢q, which also
means that the expectation EF¢ = ¢g. Hence, we so not need to perform a non-linear filtering to
recover ¢g.

The graph of f for £ = 0.1 to 0.9 and ¢¢ = 0 is given in figure 10.

fle) =

4.3 Smoothing of the Control Inputs

In the previous section, we showed how to extract parameters s and ¢ from the updated positions
determined from the vision system. The signals s1, s2 described in equations 12 and 14 are in fact
the smoothed versions of the expectations of the control signals s, s? which are the arc length and
the arc length squared. The smoothing filter we use to compute these signals i1s a moving-average
(MA) filter using a Kaiser window [25]. This filter provides the largest ratio of signal energy in the
main lobe and a side lobe, which usually results in a filter of lower order. The windowing function
is given by

B In(B/1—(1-2n/M)?)
wi(n) =
In(B)
where Iy 1s the modified zeroth-order Bessel function, £ is the shape parameter which defines the
width of the main lobe and M is the order of the filter. According to [25], 5 and M are given by

_A-T795
T 14.36 Aw
and
5= 0.1102(A — 8.7), A>50
T 0.5842(A — 21)%% 4+ 0.07886(A — 21), 21 < A <50

where A is the stopband attenuation and Aw = (w, — w.)/ws, w, is the stopband frequency, w, is
the passband frequency and w; is the sampling frequency.

We have adopted A = 30 and Aw = 0.05 which results in M = 30. Since the frequency of the
vision algorithm is about 60 Hz, the overall length of the window is about 0.5 seconds. We also
apply this MA filter to the bending parameter ¢.

14

www.manaraa.com

The implementation of MA filter is straightforward: once the weights are computed off-line; a
window of length M of measurements is retained and each sample is multiplied by an appropriate
weight in the sampling period, which requires M multiplications and M — 1 additions. This allows
reasonably wide windows (even up to several hundreds entries) to be used in computing the smoothed
signal.

4.4 Prediction and Synchronization

The host computer controls the initial vision processing and subsequent computation of control
parameters described above. The host computer is able to predict ahead the trajectory using the
derivation of velocity and curvature in equations (4) and (5). These updated predictions are sent
to the trajectory generator that is actually controlling the robot arm. The trajectory generator is a
separate system that has two parallel tasks: a low-priority task which reads the serial line receiving
updated control signals and high-priority task which calculates the transformation equation and
moves the manipulator. Those two tasks communicate via shared memory. The job of the robot
controlling program is to synchronize its two tasks (i.e. to obtain mutual exclusion in accessing
shared data), to unpack input packets read from the serial line, and to update the joint servos every
30 msec.

The asynchronous nature of the communication between the host computer and the trajectory
generator can result in missed or delayed communications between the two systems. Since the
updating of the robotic arm parameters needs to be done at very tightly specified servo rates (30
msec), it is imperative that the trajectory generator can provide updated control parameters at
these rates, regardless of whether it has received a new control input from the host. Therefore, we
have implemented a fixed gain o — 3 — 7 filter as part of the trajectory generator [39]. This filter
provides a small amount of prediction to the trajectory parameters if the control signals from the
host are delayed.

We are using RCCL [20] to control the robotic arm (a PUMA 560). RCCL (Robot Control
C Language) allows the use of C programming constructs to control the robot as well as defining
transformation equations (as described in [36]). The transformation equations permit dynamic
updating of arm position by generating the 4 x 4 transform of the moving object’s position from the
vision system and sending this information to the arm control algorithm (see Figure 11).

5 MOTOR COORDINATION FOR GRASPING

The remaining part of our system is the interception and grasping of the object. We have examined
the human psychological literature in order to find useful paradigms for robotic visual-motor coor-
dination strategies that include arm movement and grasping from visual inputs. In this section we
briefly describe some relevant theories and their relation to our own work.

There are several theories on the organization of skilled human motor control. Richard Schmidt
[19] has proposed a theory of generalized motor programs, or movement schemas. In this view,
a skilled action is composed of an ordered set of parametrized motor control programs of short
duration (less than 200 msec), each of which accomplishes one part of the task. As one program
is completed, the next one is executed. Generalized motor programs accomplish several objectives:
(1) they specify which muscle to move in a given motion; (2) the order of contraction of the muscles;
(3) the phasing within the sequence, i.e., the temporal relationships among the contractions; (4) the
relative force of each element. At the initiation of a skilled task, the parameters of the motor control
program are determined by sensory input and task demands, and then the programs are executed
to completion. If the wrong program is selected for some reason, the program cannot be stopped by
usepofsensorypinformation An example of this can be seen in the motor activity associated with

15

www.manaraa.com

T6 Tool Drive

Base Obj Grasp
W 0

Graph nodes represent coordinate frames:
e W is world-coordinate frame

e S is robot shoulder coordinate frame

M is 6th joint coordinate frame

T is tool (gripper) coordinate frame
e (G 1s grasping position coordinate frame

e O is moving object coordinate frame

Graph edges represent 4 x 4 coordinate transforms:
e Base is constant transform between W and S
e T6 is variable transform computed by RCCL in each sampling interval
e Tool is variable transform defined by the hand kinematics

e Drive is the transform introduced internally by RCCL to obtain straight-line motion in Carte-
sian coordinates

o Grasp is constant transform which defines grasping point relative to the moving object

e Obj is variable transform defined by vision subsystem outputs - it defines the position of the
moving object in the world coordinate frame

Figure 11: Transform Equation.

16

www.manaraa.com

playing table tennis. In moving the arm to hit the ball, the motion of the racket is determined
before the beginning of the swing and visual input has little effect after the initiation of motion. As
an example of Schmidt’s theory, the skilled task of grasping a moving object could be partitioned
into two motor control schemas: one to position the arm and a second one to control the grasping
action.

The schema concept maps into Von Hofsten’s ideas about the development of grasping skills
in children [44] He believes there are two separate sensorimotor systems responsible for reaching:
one for approaching the target and one for grasping it. During early childhood, the precise timing
between these two systems develops as the child learns how to catch. The reaching system develops
first, before a child is capable of grasping. But even before he is capable of closing his hand at
precisely the right moment, he has begun to develop the ability to move his hand toward a moving
object and predict the location at which his hand will intercept the object. With growth, a child
learns to control the timing between reaching and grasping, that is, to close his hand at the correct
moment. Experimental evidence has shown that there is a window of approximately 14 msec during
which the hand must begin closing. Unlike Schmidt, however, Von Hofsten does not consider vision
and grasping to be two mutually exclusive tasks [43] Visual tracking is used to guide the reaching
arm during its motion, not only before motion. A coordinated motion is a combination of perceptual
schemas and motor schemas (see Iberall and Arbib [7]).

Vision is used during the reaching phase of the task for what psychologists call “prospective
control”. Prospective control corresponds to predictive filtering, as used by control theorists. In
grasping a moving object, it 1s necessary for the hand to move not to the current position of the
object, but to plan ahead to where it will be shortly. Vision, rather than haptics, provides the basis
of prospective control because touch cannot provide the anticipatory information required to predict
the course of a moving object. There are two predominant theories about what visual schema is
used to track a moving object and aid in predicting the intersection of the reaching hand and that
object. Lee [28] proposes the use of vision to measure the expansion of the image on the retina
in order to estimate the time until contact. The attraction of this theory is that humans would
not need to compute the velocity and location of the moving object, but would calculate the more
useful time-until-contact information. A person catching an object uses this image to compute when
to begin the correct motion commands (usually at about 300 msec before the actual grasp). Von
Hofsten disputes the use of retinal expansion information because it is clear that people are able to
track targets in which there is no such expansion, such as objects that are circling or passing across
the field of view. He suggested an alternative schema in which people calculate the distance to a
moving object by using the vergence angle to the object. Vision seems to be used predominantly to
track the moving object, but the catcher also tracks his hand during reaching to aid his nonvisual
proprioceptive senses, that is, to help judge the position of his hand in relation to the environment.
Finally, vision must be used during the reaching phase to orient the hand correctly in relation to
the object that is being caught.

We also note a relevant fact for human contact and grasping of objects. The central factor to
the final grasp is the time of the onset of hand closure. In early childhood (up to about 5 months),
closing the hand is triggered primarily by touch. Children tend to begin grasping only when they
are already in contact with the object. By the time a child is 13 months old, however, the hand
begins closing before touch. We take the view in this paper that our robotic system is past early
childhood - we will begin closing the hand before actual contact is made.

The initial strategy we have adopted in picking up the object is an open loop strategy, similar
in spirit to the pre-programmed motor control schemas described in the psychological literature.
Schmidt’s schema theory holds that for tasks of short duration, perception is used to find a set of
parameters to pass to a motor control program. It is not used during the execution of a task. When
grasping a moving object, for example, once vision determined the trajectory of the object, the reach
and grasping motor schemas take over with no interference from vision.

17

www.manaraa.com

In our implementation of this strategy, vision is not used to continually monitor the grasping,
but only to provide a final position and velocity from which the arm is directed to very quickly move
to the object. This automatic movement i1s done by establishing coordinate frames of action for each
of the components of the system and solving transformation equations (see Figure 11).

The transformation equations permit dynamic updating of the arm position by generating the
4 x 4 transform of the moving object’s position from the vision system and sending this information
to the arm control algorithm. This positional information from the vision system is used to update
the Obj transform in Figure 11. The other transforms in the equation are known, and this allows
the system to solve for the Drive transform which is the transform used to update the manipulator’s
joints and develop a straight line path in Cartesian coordinates that will bring the hand into contact
with the moving object. Because the movement of the hand requires a small amount of time during
which the object may have moved, the object’s trajectory is predicted ahead during the movement
using the o — 3 — v predictor. By keeping the fingers of the hand spread during this maneuver, no
actual contact takes place until the gripper reaches the position of the moving object. Once this
position is achieved, the gripper is commanded to close and grasp the object.

6 EXPERIMENTAL RESULTS

We have implemented the system described above in order to demonstrate the capability of the
methods. The goal was to track a moving model train, intercept it, stably grasp it and pick it up.
The train was moving in an oval trajectory; however, the system had no a priori knowledge of this
particular trajectory. The velocity of the train was 10-20 em/s. In this section we present some
results obtained by experiments. First, in figure 12 we have the actual measured arc length signal
s1 (black) and the filtered signal sq (gray). It is noticeable that sq is somewhat below the expected
value of s;. The nature of s; is quite noisy; however, the analysis described in section 4 was able
to accurately extract the correct control signal. The arm control is particularly smooth and jerk
free, stable over time (the tracking is continuous for many revolutions of the train) and is highly
accurate in being able to intercept and grasp the object between the jaws of the gripper as it moves.
Figure 13 shows the moving object’s trajectory points computed by the vision algorithm (black) and
the commanded control signals after filtering (gray). As can be seen, the control system is able to
accomplish its task of both smoothing for noise and extracting an accurate position of the moving
object.

Because we are using a parallel jaw gripper, the jaws must remain aligned with the tangent to
the actual trajectory of the moving object. This tangential direction is computed directly from the
calculation of the bending parameter ¢ during the trajectory modeling phase and is used to align
joint 6 of the robot to keep the gripper correctly aligned. This correct alignment allows grasping to
occur at any point in the trajectory.

Figure 14 shows 3 frames taken from a video tape of the system intercepting, grasping and
picking up the object. The system is quite repeatable, and is able to track other arbitrary trajectories
in addition to the one shown.

7 SUMMARY AND FUTURE WORK

We have developed a robust system for tracking and grasping moving objects. The system relies
on real-time stereo_triangulation of optic-flow fields and is able to cope with the inherent noise and

18

www.manaraa.com

30T

201

15+

10

} } } } } : :
1200 1400

200 400 600 800 1000
Figure 12: Input signal s; (black) and filtered signal sy (gray)

‘:_*\
600 e
\ |
Ty
400 ‘ \A \M}
2004
~100 100 200 300 400

Figure 13: Input trajectory (black) and filtered trajectory (gray)

19

www.manaraa.com

-
=3
=
=ix
=213
=

Eigure 14: Intercepting, grasping and picking up the object

20

www.manaraa.com

inaccuracy of visual sensors by applying parameterized filters that smooth and can predict ahead
the moving object’s position. Once this tracking is achieved, a grasping strategy is applied that
performs an analog of human arm movement schemas.

The system is robust in a number of ways. The vision system does not require special lighting,
object structure or reflectance properties to compute motion since it is based upon calculating optic-
flow fields. The control system is able to cope with the inherent visual sensor noise and triangulation
error by using a probabilistic noise model and local parameterization that can be used to build a
non-linear filter to extract accurate control parameters. The arm control system is able to cope with
the inherent bandwidth mismatches between the vision sampling rate and the servo-update rate by
using a fixed gain predictive filter that allows arm control to function in the occasional absence of
a video control signal. Finally, the system is robust enough to repeatedly pick up a moving object
and stably grasp it.

We are currently extending this system to other hand-eye coordination tasks. An extension
we are pursuing is to implement other grasping strategies. One strategy is to visually monitor the
interception of the hand and object and use this visual information to update the Drive transform at
video update rates. This approach is computationally more demanding, requiring multiple moving
object tracking capability. The initial vision tracking described above is capable of single object
tracking only. If we attempt to visually servo the moving robotic arm with the moving object, we
have introduced multiple moving objects into the scene.

We have identified 2 possible approaches to tracking these multiple objects visually. The first
is to use the PIPE’s region of interest operator that can effectively “window” the visual field and
compute different motion energies in each window concurrently. Each region can be assigned to a
different stage of the PIPE and compute its result independently. This approach assumes that the
moving objects can be segmented. This is possible since the motion of the hand in 3-D is known -
we have commanded it ourselves. Therefore, since we know the camera parameters and 3-D position
of the hand, 1t will be possible to find the relevant image-space coordinates that correspond to the
3-D position of the hand. Once these are known, we can form a window centered on this position in
the PIPE, and concurrently compute motion energy of the moving object and the moving hand in
each camera. Each of these motion centroids can then be triangulated to find the effective positions
of both the hand and object and compute the new Drive transform. Both computations must,
however, compete for the hardware histogramming capability needed for centroid computation, and
this will effectively reduce the bandwidth of position updating by a factor of 2.

Another approach is to use a coarse-fine hierarchical control system that uses a multi-sensor
approach. As we approach the object for grasping, we can shift the visual attention from the static
cameras used in 3-D triangulation to a single camera mounted on the wrist of the robotic hand.
Once we have determined that the moving object is in the field of view of this camera, we can use its
estimates of motion via optic-flow to keep the object to grasped in the center of the wrist camera’s
field of view. This control information will be used to compute the Drive transform to correctly
move the hand to intercept the object. We have implemented such a tracking system with a different
robotic system [3] and can adapt this method to this particular task.

References

[1] M. Abramowitz, editor. Handbook of Mathematical Functions. National Bureau of Standards,
1964.

[2] E. H. Adelson and J. R. Bergen. Spatio-temporal energy models for the perception of motion.
Journal of the Optical Society of America, 2(2):284-299, 1985.

21

www.manaraa.com

[3] P. Allen. Real-time motion tracking using spatio-temporal filters. In Proceedings of DARPA
Image Understanding Workshop, Palo Alto, May 1989.

[4] P. K. Allen, B. Yoshimi, and A. Timcenko. Real-time visual servoing. In Proceedings of the
IEEE Conference on Robotics and Automation, 1991.

[5] P. Anandan. Measuring visual motion from image sequences. Technical Report COINS TR-87-
21, COINS Dept., University of Massachusetts-Amherst, 1987.

[6] N. A. Andersen, O. Ravn, and A. T. Sorensen. Using vision in real-time control systems. In
American Control Conference, 1991.

[7] M. Arbib, T. Iberall, and D. Lyons. Coordinated control programs for movements of the hand.
Technical Report COINS TR 83-25, Dept. of CS University of Massachusetts, August 1983.

[8] Aspex. PIPE User’s Manual.

[9] C. Brown. Gaze controls with interaction delays. Proc. DARPA Image Understanding Work-
shop, pages 200-218, May 23-26 1989.

[10] P. J. Burt, J. R. Bergen, R. Hingorani, R. Kolczynski, W. A. Lee, A. Leung, J. Lubin, and
H. Shvayster. Object tracking with a moving camera. In IEEFE Workshop on Visual Motion,
pages 2-12, Irvine, CA, March 20-22 1988.

[11] P. J. Burt, C. Yen, and X. Xu. Multi-resolution flow-through motion analysis. In Proceedings
of the IEEE CVPR Conference, pages 246-252, 1983.

[12] B. F. Buxton and H. Buxton. Computation of optic flow from the motion of edge features in
image sequences. Image and Vision Computing, 2, 1984.

[13] J. J. Clark and N. J. Ferrier. Control of visual attention in mobile robots. IEEE Conference
on Robotics and Automation, pages 826-831, May 15-19, 1989.

[14] P. Corke, R. Paul, and K. Wohn. Video-rate visual servoing for sensory-based robotics. Technical
report, GRASP Laboratory, Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, 1989.

[15] P. J. B. et al. Object tracking with a moving camera. In Proceedings of the IEEE Conference
on Robotics and Automation, 1989.

[16] I. D. Faux and M. J. Pratt. Computational Geometry for Design and Manufacture. John Wiley
& Sons, 1980.

[17] J. T. Feddema and C. S. G. Lee. Adaptive image feature prediction and control for visual track-
ing with a hand-eye coordinated camera. IEEF Transaction on Systems, Man and Cybernetics,

20(5), 1990.

[18] R. Goldenberg, W. C. Lau, A. She, and A. Waxman. Progress on the prototype pipe. In IEEFE
Conference on Robotics and Automation, Raleigh, N. C., March 31-April 3 1987.

[19] H. H. H. Cruse, J. Dean and R. Schmidt. Utilization of sensory information for motor control.
In H. Heuer and A. F. Sanders, editors, Perspectives on Perception and Action, pages 43-79.
Lawrence Erlbaum, 1987.

[20] V. Hayward and R. Paul. Robot manipulator control under unix. In Proc. of the 13th ISIR,
pages 20:32-20:44, Chicago, April 17-21 1983.

[21] D. Heeger. A model for extraction of image flow. In First International Conference on Computer

Vision, London, 1987.
22

www.manaraa.com

[22] B. K. P. Horn. Robot Vision. M.I.'T. Press, 1986.

[23] B. K. P. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185-203,
1983.

[24] N. Houshangi. Control of a robotic manipulator to grasp a moving target using vision. In
Proceedings of the IEEE Conference on Robotics and Automation, 1990.

[25] L. B. Jackson. Digital Filters and Signal Processing. Kluwer Academic Publishers, 1986.

[26] E. W. Kent, M. O. Shneier, and R. Lumia. Pipe: Pipelined image processing engine. Journal
of Parallel and Distributed Computing, (2):50-78, 1985.

[27] A.J. Koivo and N. Houshangi. Real-time vision feedback for servoing robotic manipulator with
self-tuning controller. IEEE Transaction on Systems, Man and Cybernetics, 21(1), 1991.

[28] D. Lee, D. Young, P. Reddish, S. Lough, and T. Clayton. Visual timingin hitting an accelerating
ball. Quarterly Journal of Fxperimental Psychology, 35A:333-346, 1983.

[29] S. Lee and Y. Kay. An accurate estimation of 3d position and orientation of a moving object
for robot stereo vision: Kalman filter approach. In Proceedings of the IEEE Conference on
Robotics and Automation, 1990.

[30] S. W. Lee and K. Wohn. Tracking moving objects by a mobile camera. Technical Report
MS-CIS-88-97, University of Pennsylvania, Department of Computer and Information Science,
Philadelphia, November 1988.

[31] R. C. Luo, R. E. M. Jr., and D. E. Wessell. An adaptive robotic tracking system using optical
flow. In TEEE Conference on Robotics and Automation, pages 568-573, Philadelphia, 1988.

[32] W. T. Miller. Real-time application of neural networks for sensor-based control of robots with
vision. IEEE Transactions on Systems, Man and Cybernetics, 19(4):825-831, July/Aug 1989.

[33] H. H. Nagel. On the estimation of dense displacement vector fields from image sequences. In
Workshop on motion: Representation and Perception, pages 59-65, Toronto, 1983.

[34] N. Papanikolopoulos, T. Kanade, and P. Khosla. Vision and control techniques for robotic
visual tracking. In Proceedings of the IEEE Conference on Robotics and Automation, 1991.

[35] N. Papanikolopoulos, P. K. Khosla, and T. Kanade. Adaptive robotic visual tracking. In
American Control Conference, 1991.

[36] R. Paul. Robot Manipulators. MIT Press, Cambridge, MA, 1981.

[37] B.S.Y.Rao and H. F. Durrant-Whyte. A fully decentralized algorithm for multi-sensor Kalman
filtering. Technical Report OUEL 1787/89, Dept. of Engineering Science, University of Oxford,
1989.

[38] R. B. Safadi. An adaptive algorithm for robotics and computer vision application. Techni-
cal Report MS-CIS-88-05, Department of Computer and Information Science, University of
Pennsylvania, January 1988.

[39] R. B. Safadi. An adaptive tracking algorithm for robotics and computer vision application.
Master’s thesis, University of Pennsylvania, 1988.

[40] G. L. Scott. Four-line method of locally estimating optic flow. Image and Vision Computing,
5(2), 1986.

23

www.manaraa.com

Figure 15: Trajectory curvature &

[41] A.Singh. An estimation-theoretic framework for image-flow computation. In Proc. International
Conference on Computer Vision (ICCV-90), Kyoto, Japan, December 1990.

[42] G. Verghese, K. G. Lynch, and C. R. Dyer. Real-time motion tracking of three-dimensional
objects. In TEEFE International Conference on Robotics and Automation, Cincinnati, May 13-18
1990.

[43] C. von Hofsten. Catching. In H. Heuer and A. F. Sanders, editors, Perspectives on Perception
and Action, pages 33-36. Lawrence Erlbaum Associates, 1987.

[44] C. von Hofsten. Early development of grasping an object in space-time. In M. A. Goodale,
editor, Vision and Action: The Control of Grasping, pages 65-79. Ablex Publishing Company,
1990.

[45] L. E. Weiss, A. Sanderson, and C. P. Neuman. Dynamic sensor-based control of robots with
visual feedback. IEEE Journal of Robotics and Automation, RA-3(5):404-417, October 1987.

[46] J. Wiklund and G. Granlund. Tracking of multiple moving objects. In V. Cappelini, editor,
Time Varying Image Processing and Moving Object Recognition, pages 241-249, 1987.

[47] M. Xie. Dynamic vision: Does 3d scene perception necessarily need two cameras or just one?
Technical report, Institut National de Recherche en Informatique et en Automatique, 1989.

A Trajectory Curvature

Here we prove that the trajectory curvature is given by the formula & = limp_¢ tan ¢o/sq where
the following nomenclature is being adopted (see figure 15):

e £ 1s the trajectory curvature
e T is the sampling interval

o Py_1, Py, Pry1 are three consecutive points along the trajectory

o 50 = ||Prky1 — Pil| is the distance between points Pr11 and Py
e O is the center of rotation
® ©p = LPp1OP; = angle between the tangent lines ¢;_; and g

24

www.manaraa.com

o o = % is the angle between lines P,_1 Py, and Py Pgy1

e) 18 the angle which tangent line ¢; forms with z axis

Now we have:

d

t 1 tan g
lim =20 = iy 47 =
T—0 s T—0 d g

dr
1 T 1 d Ypq1—Ye-1
= — lim — =
v t—0 cos? o dT' 2
1 . d arctany,,, —arctany;_;

= ———lim— =

/1 + y/2 t—0 d7T’ 2

/1

SR A— (19)

(1 + y/2)3/2

which is the formula for curvature [16].

B Velocity Expectation and Variance

In order to compute the mathematical expectation of the velocity we differentiate the following
integral (integral 11.4.31 in [1]):

o0 2 1 2
/0 e” " In(bt)dt = §£eb /Safo(bz/&l) (20)

with respect to a and by setting @« = 1/20% b = sg/0? we get formula (12).
To prove formula (14) we use formula (11.4.29) from [1] (we set v = 0):

2
el /4a

~at*4 1o (bt)dt = 21
|erna = (21)

By differentiation with respect to ¢ and introducing the substitutions for a and b as in (20) we get
the formula (14).

C Verification of formulas 13, 14, 15

4

After substituting that value for z into 15, 16 follows immediately.

v = \/p2—222 _ \/53—202
2 I

. The formula 16 follows from 15 as follows: from z = we get by solving for z: z = \/—L

242"

S2

, after solving for o we get o = Ttz which 1s

Since we have that

equivalent to 18. From 14 follows that sy = \/s3 — 262. By substituting the value for o, we get

2

x;j_z It is easily shown that the last expression is equivalent to 17.
0

sp = 5%—2

25

www.manaraa.com

